(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
lt(s(x), s(y)) →+ lt(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
lt, plus, help

They will be analysed ascendingly in the following order:
lt < help
plus < help

(8) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
lt, plus, help

They will be analysed ascendingly in the following order:
lt < help
plus < help

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false

Induction Step:
lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
false

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
plus, help

They will be analysed ascendingly in the following order:
plus < help

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_0':s3_0(a), gen_0':s3_0(n270_0)) → gen_0':s3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)

Induction Base:
plus(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)

Induction Step:
plus(gen_0':s3_0(a), gen_0':s3_0(+(n270_0, 1))) →RΩ(1)
s(plus(gen_0':s3_0(a), gen_0':s3_0(n270_0))) →IH
s(gen_0':s3_0(+(a, c271_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(a), gen_0':s3_0(n270_0)) → gen_0':s3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
help

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol help.

(16) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(a), gen_0':s3_0(n270_0)) → gen_0':s3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)

(19) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(a), gen_0':s3_0(n270_0)) → gen_0':s3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
quot(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(lt(c, x), x, s(y), c)
if(true, x, s(y), c) → s(help(x, s(y), plus(c, s(y))))
if(false, x, s(y), c) → 0'

Types:
lt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)